C-Prime Anti Fuzzy Bi-ideals in Γ-Near-Rings

¹P.Abitha, ²R.Rajeswari, ³N.Meenakumari

¹PG Student, ¹A.P.C Mahalaxmi college for women, Thoothukudi, Tamilnadu, India.

¹abitha13paulraj@gmail.com

^{2,3} PG and Research Department of Mathematics

^{2,3} A.P.C Mahalaxmi college for women, Thoothukudi, Tamilnadu, India.

,²rajeswarir30@yahoo.com,³meenakumari.n123@gmail.com

Abstract

The concept of fuzzy sets was introduced by Zadeh in 1965. Γ -near-rings were defined by Sathyanarayana and the ideals in Γ -near-rings studied by Sathyanarayana and Booth. C-prime fuzzy ideals of near-rings were introduced by Kedukodi, Sathyanarayana and Kuncham in 2007. In this paper, we introduce the notion of c-prime anti fuzzy bi-ideals. An anti fuzzy bi-ideal μ of M is called c-prime if for all x, $y \in M$, $\gamma \in \Gamma$, $\mu(x \gamma y) \ge \min \{ \mu(x), \mu(y) \}$ and obtain some of their properties.

Keywords

Fuzzy bi-ideal, anti fuzzy bi-ideal, c-prime anti fuzzy bi - ideal.

1. Introduction

The introduction of fuzzy sets by Zadeh, the fuzzy set theory developed by Zadeh and others has found many applications in the domain of mathematics. Gamma near-rings were defined by Bh. Satyanarayana [5] and the ideal theory in Gamma near rings was studied by Bh. Satyanrayana [5] and G.L. Booth. Fuzzy ideals in Gamma near-rings were introduced by Y.B.Jun and M.A.Ozturk. In this paper, we introduce c-prime anti fuzzy bi-ideals in Gamma near-rings and study their properties. Throughout this paper, we assume that M is a zero symmetric Γ -near-ring.

2. Preliminaries Definition

2.1:

A non-empty set N with two binary operations"+" and"." is called a near-ring, if it satisfies the following axioms:

(i)(N, +) is a group,

(ii)(N, -) is a group,

(ii)(N, .) is semi group,

(iii)(x+y).z=x.z+y.z for all x, y, z ϵ N.

Precisely speaking it is a right near-ring, because it satisfies the right distributive law. We will use the word "near-ring" to mean "right near-ring". We denote x y instead of x. y. moreover, a near-ring Nis $x \in \mathbb{N}$, where 0 is the additive identity in N.

Definition 2.2:

Let (M, +) be a group and Γ be a non empty set. Then M is said to be a Γ -near-ring, if there exist a mapping M x Γ x M \rightarrow M (The image of (x, α, y) is denoted by $(x \alpha y)$ satisfied the following conditions: (i) $(x + y) \alpha z = x \alpha z + y \alpha z$,

(ii)(x α y) β z=x α (y α z) for all x ,y ,z ϵ M and α , β ϵ Γ .

Definition 2.3:

A Γ near-ring M is said to be zero-symmetric if $m\gamma 0 = 0$ for all $m \in M$ and for all $\gamma \in \Gamma$.

Definition 2.4:

Let A be a non-empty set. A fuzzy subset of A is a function μ : $A \to [0, 1]$. For any $t \in [0, 1]$, the set $\mu_t = \{x \ A: \mu(x) \ge t\}$ is called level subset of μ . For any $t \in [0, 1]$ the set $\mu_t = \{x \in A: \mu(x) \le t\}$ is called anti level subset of μ .

Definition 2.5:

Let M be a Γ –near-ring and μ be a fuzzy subset of M. Then the complement of μ is denoted by μ^c and is defined by $\mu^c(x) = 1 - \mu(x)$, for any $x \in M$.

Definition 2.6:

Let M and N be Γ -near-rings. A map f: M \rightarrow N is called a Γ -near-ring homomorphism, if (x + y) =f(x)+f(y) and $f(x \alpha y)=f(x) \alpha f(y)$ for all $x,y \in M$ and $\alpha \in \Gamma$

Definition 2.7:

Let M be a Γ -near-ring .For an endomorphism f of M and fuzzy set μ in M, we define a new fuzzy set μ^f in M by $\mu^f(x) = \mu(f(x))$ or all $x \in M$.

Definition 2.8:

Let μ be a fuzzy set of a Γ -near-ring M and f be a function defined on M, then the fuzzy set v in f(M) is defined by $v(y) = \inf \{ \mu(x) : x \in f^{-1}(y) \}$ for all $y \in f(M)$ is called the image of μ under.similarly, if v is a fuzzy set in f(M),thenu=v o f in M(that is, the fuzzy set defined by $\mu(x)=v(f(x))$ for all $x \in M$ is called the pre-image of v under f.

Definition 2.9:

- (i) For a family of anti fuzzy sets $\{\mu_i : i \in \land\}$ in a Γ -near-ring M, the union is defined by $\bigcap_{i \in \Lambda} \mu_i(x) = \sup \{ \mu_i(x) : i \in \Lambda \}$ for each $x \in M$
- (ii) For a family of anti fuzzy sets $\{\mu_i: i \in \Lambda\}$ in a Γ-near-ring M, the intersection $\cap_i \mu_i(x)$ of $\{\mu_i:$ $i \in \Lambda$ is defined by $\bigcap_{i \in \Lambda} \mu_i(x) = \inf \{ \mu_i(x) : i \in \Lambda \}$ for each $x \in M$.

Definition

2.10:

A fuzzy set µ Γ-near-ring called a fuzzy

γ_1	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	a	0	a
С	0	0	b	С

left(respectively right) ideal of M (i)μ(xy) \geq min{ μ (x), μ (y)},(ii) μ (y + x-y) \geq μ (x),for all x, yeM (iii) $\mu(u \alpha(x+v)-u \alpha v) \ge \mu(x)$ (respectively $\mu(x)$ α u) $\geq \mu(x)$)for all x, u, v \in M and $\alpha\Gamma \in$. A fuzzy set μ in a Γ -near-ring M is called an fuzzy ideal M ,if μ is both fuzzy left and right ideal of M. Note that if μis a fuzzy left (respectively right) ideal of a Γ near-ring M ,then $\mu(0) \ge \mu(x)$ for all $x \in M$, where 0 is the zero element of M.

Definition 2.11:

A fuzzy set μ in a Γ -near-ring M is called an anti fuzzy left(respectively right) ideal of M $(i)\mu(x-y) \le \max\{\mu(x),\mu(y)\}, (ii)\mu(y+x-y) \le \mu(x), \text{for } i$ all x, y \in M (iii) μ (u α (x +v)-u α v) $\leq \mu(x)$ (respectively $\mu(x \alpha u) \geq \mu(x)$) for all x, u, v \in M and $\alpha \in \Gamma$. Afuzzy set μ in a Γ -near-ring M is called an anti fuzzy ideal M, if μ is both anti fuzzy left and right ideal of M. Note that if uis an anti fuzzy left (resp right) ideal of a Γ -near-ring M, then $\mu(0) \le \mu(x)$ for all $x \in M$ where 0 is the zero element of M.

Definition 2.12:

A subgroup B of (M, +) is a bi-ideal if and only if $B\Gamma M\Gamma B\subseteq B$.

Definition 2.13:

A fuzzy set μ in M is called an anti fuzzy biideal of M if

(i) $\mu(x-y) \le \max \{\mu(x), \mu(y)\}\$ for all $x, y \in M$

(ii) μ (x α y β z) \leq max { μ (x), μ (z)} for all x, y, $z \in M$ and $\alpha \in \Gamma$.

Definition 2.14:

A fuzzy bi-ideal µ of M is called c-prime if for all $x, y \in M, \gamma \in \Gamma, \mu(x \gamma y) \le \max \{\mu(x), \mu(y)\}.$

3. C – prime anti fuzzy bi – ideals

Definition 3.1:

An anti fuzzy bi-ideal µ of M is called cprime if for all x, y \in M, $\gamma \in$ \Gamma, $\mu(x \gamma y) \ge \min$ $\{\mu(x),\mu(y)\}.$

Example 3.2:

Consider the Γ -near-ring defined by the 'Klein's four group {0,a,b,c} with $\Gamma = {\gamma_1, \gamma_2}$ where ' γ_1 ' and ' γ_2 ' are given by the schemes 7(0,7,11,1) and 12:(0,7,0,7)

in a

M is

Let μ be an anti fuzzy set on M .Take the anti fuzzy points "0.4, 0.6, 0.4 and 0.5".Then μ is a c-prime anti fuzzy bi-ideal of M.

Lemma 3.3:

Let B be a bi-ideal of a Γ -near-ring M. For any 0 < t < 1,

There exists an anti fuzzy bi-ideal μ of M such that μ_t =M\B.

Proof:

Let B be a bi-ideal of a Γ near-ring M. Define $\mu:M \rightarrow [0,1]$ by

$$\mu(x) = \begin{cases} 0 & \text{if } x \in B \\ t & \text{if } x \notin B \end{cases}$$

where t is a fixed number in (0,1).clearly $\mu_t = M \setminus B$. Let $x, y \in M$. If

 $x, y \in B \text{ then } \mu (x-y) = 0 = \max \{$

 $\mu(x)$, $\mu(y)$ }. If at least one of x and y is not in B, then $x-y\notin B$ and so $\mu(x-y)=t=\max \{\mu(x),\mu(y)\}$.

Let x, y, $z \in M$ and α , $\beta \in \Gamma$. If x, $z \in B$, then $\mu(x) = 0$; $\mu(z) = 0$. Also

 μ (x α y β z) =0= max { μ (x), μ (z)}.

If at least one of x and z is not in B,

Then $\mu(x \alpha y \beta z) \ge 0 = \min \{\mu(x), \mu(z)\}$. Thus μ is an anti fuzzy bi-ideal of M.

Lemma 3.4:

Let B be a non-empty subset of M. Then B is a bi-ideal of M if and only if the characteristic function μ_B of B is an anti fuzzy bi-ideal of M

Proof:

Let B be a bi-ideal of a Γ near-ring M. For, x, y $\in \mathbb{B}$, $x-y\in \mathbb{B}$.

- (i) Let $x, y \in M$.
- (a) If x, y \in B, then $\mu_B(x) = 1$ and $\mu_B(y) = 1$. Thus $\mu_B(x-y) = 1 = \max \{\mu_B(x), \mu_B(y)\}$
- (b) If $x \in B$ and $y \notin B$, then $\mu_B(x) = 1$ and $\mu_B(y) = 0$. Thus

 $\mu_B (x-y)=0 \le \max \{ \mu_B (x), \mu_B (y) \}.$

(c) If $x \notin B$ and $y \in B$, then $\mu_B(x) = 0$; $\mu_B(y) = 1$. Thus

 $\mu_B (x-y)=0 \le \max \{ \mu_B (x), \mu_B (y) \}.$

(d) If $x \notin B$ and $y \notin B$, then $\mu_B(x) = 0$; $\mu_B(y) = 0$. Thus

 $\mu_B(x-y) = 0 = \max \{ \mu_B(x), \mu_B(y) \}.$

- (ii) Let $x, y, z \in M$. and $\alpha, \beta \in \Gamma$
- (a) If $x \in B$ and $z \in B$, then $\mu_B(x) = 1$ and $\mu_B(z) = 1$. Thus

 μ_B (x α y β z)=1= max { μ_B (x), μ_B (z) }. (b) If x \in Band z \in B, then μ_B (x) = 1 and μ_B (z) = 0. Thus

γ_2	0	a	b	c
0	0	0	0	0
a	0	a	0	a
b	0	0	0	0
c	0	a	0	a

 μ_B (x α y β z)=0 \leq max { μ_B (x), μ_B (z)}. (c) If x \notin Band z \in B, then μ_B (x) = 0 and μ_B

 μ_B (x α y β z)=0 \leq max { μ_B (x), μ_B (z) }. (d) If x \notin Band z \notin B, then μ_B (x) = 0 and μ_B (z) = 0. Thus

 μ_B (x α y β z)=0= max { μ_B (x), μ_B (z)}. Thus μ_B is a bi-ideal of M. Conversely, suppose μ_B is an anti fuzzy bi-ideal of M. Then by lemma 3.3, μ_B is two valued. Hence B is a bi-ideal of M.

Proposition 3.5:

Let B be a non-empty subset of M. Then B is a c-prime bi-ideal of M if and only if μ_B is a c-prime anti fuzzy bi-ideal of M.

Proof:

Suppose that B is a c-prime bi-ideal of M and μ_B is the characteristic function of B. By above lemma 3.4, μ_B is an anti fuzzy bi-ideal of M.

Let x, $y \in M$ and $\gamma \in \Gamma$.

If $x \gamma y \in B$, then $\mu_B(x \gamma y) = 1$

Since B is a c-prime anti fuzzy bi-ideal of M and x γ y ϵ B.

- (a) If $x \in B$ or $y \in B$, then $\mu_B(x) = 1$ or $\mu_B(y) = 1$ $\mu_B(x \gamma y) \ge \min \{\mu_B(x), \mu_B(y)\}$
- (b) If $x \gamma y \notin B$ then $\mu_B(x \gamma y) = 0$

$$\mu_B(x \gamma y) \ge \min \{\mu_B(x), \mu_B(y)\}$$

Conversely,

Assume that μ_B is a c-prime anti fuzzy bi-ideal of \mathbf{M}

Then μ_B is an anti fuzzy bi-ideal of M.

By lemma 3.4, B is a bi-ideal of M.

Let x, $y \in M$ be such that $x \gamma y \in B$

Then $\mu_B(x\gamma y) = 1$

 $\mu_B(x \gamma y) \ge \min\{\mu_B(x), \mu_B(y)\}$

We have min $\{\mu_B(x), \mu_B(y)\} = 1$.

Thus $\mu_B(x) = 1$ or $\mu_B(y) = 1$. Hence $x, y \in B$.

Proposition 3.6:

Let B be a c-prime bi-ideal of M. for any $t \in (0,1)$ there exits a c-prime anti fuzzy bi-ideal of M such that $\mu_t = M \setminus B$.

Proof:

Let $t \in (0, 1)$

Then by lemma 3.3, there exits an anti fuzzy bi-ideal μ of M defined by

$$\mu(x) = \begin{cases} t & \text{if } x \in B \\ 0 & \text{otherwise} \end{cases}$$

Such that $\mu_t = M \setminus B$.

Suppose µ is not a c-prime anti fuzzy bi-ideal of M

There exits x, y \in M and $\gamma \in \Gamma$. Such that μ (xyy) \leq min { μ (x), μ (y)}.

By definition of μ , we get

 $\mu(x) = 0$ or $\mu(y) = 0$ and $\mu(x \gamma y) = t$

 $x y y \in B$ and $x, y \notin B$.

Which is contradiction to

Since B is a c-prime bi-ideal of M.

Hence µ is a c-prime anti fuzzy bi-ideal of M.

Proposition 3.7:

Let f: $M \rightarrow N$ is a homomorphism. If μ is a cprime ideal of M, then $f^{-1}(\mu)$ is a c-prime anti fuzzy bi-ideal of M.

Proof:

Let f: $M \rightarrow N$ be a Γ near -ring homomorphism, v be an anti fuzzy bi-ideal of M and μ be the pre image of v under f.

Then $\mu(x-y)=v(\theta(x-y))=v(\theta(x)-\theta(x))$ $v(\theta(y) \le \max\{v(\theta(x), v(\theta(y))\} = \max\{\mu(x), \mu(y)\}.$ Further $\mu(x \alpha y \beta z) = v(\theta(x\alpha y\beta z)) = v(\theta(x))$, $\alpha(\theta(y)\beta\theta(z)) \leq \max\{v(\theta(x),v(\theta(z))\} = \max\{v(\theta(x),v(\theta(x))\} = \min\{v(\theta(x),v(\theta(x))\} = \min\{v(\theta(x),$ $\mu(x), \mu(z)$ for all x, y, $z \in M$ and $\alpha, \beta \in \Gamma$. Hence μ is an anti fuzzy bi-deal of M.

Definition 3.8:

Let M be an ordered Γ -near-ring. An anti fuzzy subset μ of M is called an anti fuzzy bi- filter of M if:

$$(i)x \ge y => \mu(x) \ge \mu(y)$$

$$(ii)\mu(x-y) \le \max \{\mu(x), \mu(y)\}.$$

(iii) μ (x α y β z) \geq min { μ (x), μ (z)}.for all x, y $z \in M$ and $\alpha, \beta \in \Gamma$.

Proposition 3.9:

Let M be an ordered Γ near ring and μ be an anti fuzzy subset of M. Then u is an anti fuzzy bi-filter of M if and only if the complement μ of μ^c is a cprime anti fuzzy bi-ideal subset of M.

Proof:

Suppose that µ is an anti fuzzy bi-filter of M. Let x, $y \in M$, $x \ge y$

Since μ is an anti fuzzy bi-filter of M, we have $\mu(x) \ge \mu(y)$

Then $-\mu(x) \le -\mu(y)$

 $=>1-\mu(x) \le 1-\mu(y)$

Thus $\mu^c(x) \le \mu^c(y)$

Let x, y be any two arbitrary elements of M. since μ is an anti fuzzy bi-filter of M. we have, $\mu(x-y)$ $\leq \max \{ \mu(x), \mu(y) \}.$

Let x, y, $z \in M$ and α , $\beta \in \Gamma$

Since μ is an anti fuzzy bi-filter of M. we have μ $(x\alpha y\beta z) \ge \min \{\mu(x), \mu(z)\}$

$$=>\mu^c\;(\mathrm{x}\alpha\mathrm{y}\beta\mathrm{z})\leq \max\;\{\mu^c\;(\mathrm{x}),\,\mu^c\;(\mathrm{z})\}$$

Thus μ^c is an anti fuzzy bi-ideal of M.

Let x, $y \in M$

Since µ is anti fuzzy bi-filter

We have μ (xyy) \leq max { μ (x), μ (y)}. We get μ ^c $(xyy) \ge \min \{ \mu^c(x), \mu^c(y) \}$

Hence µ'is a c-prime anti fuzzy bi-ideal subset of M.

Conversely, Assume that μ^c is a c-prime anti fuzzy bi-ideal subset of M

Then μ^c is an anti fuzzy bi-ideal of M

Let x, $y \in M$, $x \ge y$

Since μ^c is an anti a fuzzy bi-ideal of M

We have $\mu^c(x) \leq \mu^c(y)$

Then 1- $\mu(x) \le 1-\mu(y)$

 $=>-\mu(x) \leq -\mu(y)$

 $=> \mu(x) \ge \mu(y)$

Since μ^c is a c-prime anti a fuzzy bi-ideal subset of M.

We have $\mu^c(x\gamma y) \ge \min \{\mu^c(x), \mu^c(y)\}\$ for all x, $y \in M$ and $y \in \Gamma$

$$\Rightarrow \mu (x\gamma y) \leq \max \{\mu(x), \mu(y)\}$$

Let x, y, z ϵM and α , $\beta \epsilon \Gamma$

Since, μ^c is an anti fuzzy bi-ideal of M μ^{c} (x\alpha\betaz) \le \max {\mu^{c}} (x), μ^{c} (z)} $\mu (x\alpha y\beta z) \ge \min \{\mu(x), \mu(z)\}$ Thus μ is an anti fuzzy bi-filter of M.

References:

[1] G.L. Booth, A note on Gamma–near-rings, Stud. Sci. Math .Hung, (1988), 411-414.

[2] N. Meenakumari and V. Brishni, Anti fuzzy bi-Ideals in gamma near rings, July-dec, 2017.

[3] N.Meenakumari and T.Tamizh Chelvam, C-Prime Fuzzy bi-ideals in Γ -near-rings,

International Journal of Algebra and Statistics, vol 2(2013), 10-14.

- [4]N.Meenakumari and T.Tamizh Chelvam, Fuzzy Bi-ideals in Gamma Near-rings, Journal of Algebra and Discrete Structures, 9(1& 2) (2011), 43-52.
- [5] Bh. Sathyanarayana, contributions to nearring theory, doctoral thesis, Nagarjuna University, 1984.
- [6] Bh. Sathyanarayana, A note on Gamma Nearrings, Indian J.Mathemaics, 41(3) (1999), 427-433.

